
A01_MANO1167_06_GE_FM.indd   1 4/10/18   3:46 PM



Digital Design
With an Introduction to the Verilog HDL,  

VHDL, and SystemVerilog

A01_MANO1167_06_GE_FM.indd   1 3/28/18   7:18 PM



This page intentionally left blank

A01_MANO1167_06_GE_FM.indd   1 4/6/18   9:11 PM



Digital Design
With an Introduction to the Verilog HDL,  

VHDL, and SystemVerilog

Sixth Edition
Global Edition

M. Morris Mano
Emeritus Professor of Computer Engineering  

California State University, Los Angeles

Michael D. Ciletti
Emeritus Professor of Electrical and Computer Engineering  

University of Colorado at Colorado Springs

330 Hudson Street, NY NY 10013

A01_MANO1167_06_GE_FM.indd   3 3/28/18   7:18 PM



Senior Vice President Courseware Portfolio 
Management: Marcia J. Horton

Director, Portfolio Management: Engineering, Computer 
Science & Global Editions: Julian Partridge

Higher Ed Portfolio Management: Tracy Johnson 
(Dunkelberger)

Portfolio Management Assistant: Kristy Alaura
Assistant Acquisitions Editor, Global Edition: Aditee 

Agarwal
Assistant Project Editor, Global Edition: Aurko Mitra
Managing Content Producer: Scott Disanno
Content Producer: Robert Engelhardt 
Senior Manufacturing Controller, Global Edition: Kay 

Holman

Web Developer: Steve Wright
Media Production Manager, Global Edition: Vikram 

Kumar
Rights and Permissions Manager: Ben Ferrini
Manufacturing Buyer, Higher Ed, Lake Side 

Communications Inc (LSC): Maura Zaldivar-Garcia 
Inventory Manager: Ann Lam
Marketing Manager: Demetrius Hall
Product Marketing Manager: Yvonne Vannatta
Marketing Assistant: Jon Bryant
Cover Designer: Lumina Datamatics, Inc.
Cover Photo: spainter_vfx/Shutterstock 
Full-Service Project Management: Vimala Vinayakam, 

SPi Global

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook 
appear on appropriate page within text

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9NA
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2019

The rights of M. Morris Mano and Michael D. Ciletti to be identified as the authors of this work have been asserted by 
them in accordance with the Copyright, Designs and Patents Act 1988. 

Authorized adaptation from the United States edition, entitled Digital Design: With an Introduction to the Verilog HDL, 
VHDL, and SystemVerilog, 6th Edition, ISBN 978-0-13-454989-7 by M. Morris Mano and Michael D. Ciletti, published by 
Pearson Education © 2018.  

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any 
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written 
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright 
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not 
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks 
imply any affiliation with or endorsement of this book by such owners. 

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

Typeset by SPi Global
Printed and bound by Vivar in Malaysia

ISBN 10: 	 1-292-23116-5
ISBN 13: 978-1-292-23116-7

A01_MANO1167_06_GE_FM.indd   4 3/28/18   7:18 PM



5

P r e f a c e 	 9

1     D i g i t a l  S y s t e m s  a n d  B i n a r y  N u m b e r s  	 17

	 1.1	 Digital Systems 	 17
	 1.2	 Binary Numbers 	 20
	 1.3	 Number-Base Conversions 	 22
	 1.4	 Octal and Hexadecimal Numbers 	 25
	 1.5	 Complements of Numbers 	 27
	 1.6	 Signed Binary Numbers 	 33
	 1.7	 Binary Codes 	 38
	 1.8	 Binary Storage and Registers 	 47
	 1.9	 Binary Logic 	 50

2     B o o l e a n  A l g e b r a  a n d  L o g i c  G a t e s  	 57

	 2.1	 Introduction 	 58
	 2.2	 Basic Definitions 	 58
	 2.3	 Axiomatic Definition of Boolean Algebra 	 59
	 2.4	 Basic Theorems and Properties of Boolean Algebra 	 63
	 2.5	 Boolean Functions 	 66
	 2.6	 Canonical and Standard Forms 	 72
	 2.7	 Other Logic Operations 	 81
	 2.8	 Digital Logic Gates 	 83
	 2.9	 Integrated Circuits 	 89

Contents

A01_MANO1167_06_GE_FM.indd   5 3/28/18   7:18 PM



6        Contents

3     G a t e - L e ve l  M i n i m i z a t i o n  	 9 8

	 3.1	 Introduction 	 99
	 3.2	 The Map Method 	 99
	 3.3	 Four-Variable K-Map 	 106
	 3.4	 Product-of-Sums Simplification 	 111
	 3.5	 Don’t-Care Conditions 	 115
	 3.6	 NAND and NOR Implementation 	 118
	 3.7	 Other Two-Level Implementations 	 126
	 3.8	 Exclusive-OR Function 	 131
	 3.9	 Hardware Description Languages (HDLs) 	 137
	 3.10	 Truth Tables in HDLs 	 154

4     C o m b i n a t i o n a l  L o g i c  	 16 3

	 4.1	 Introduction 	 164
	 4.2	 Combinational Circuits 	 164
	 4.3	 Analysis of Combinational Circuits 	 165
	 4.4	 Design Procedure 	 169
	 4.5	 Binary Adder–Subtractor 	 172
	 4.6	 Decimal Adder 	 184
	 4.7	 Binary Multiplier 	 186
	 4.8	 Magnitude Comparator 	 188
	 4.9	 Decoders 	 191
	 4.10	 Encoders 	 195
	 4.11	 Multiplexers 	 198
	 4.12	 HDL Models of Combinational Circuits 	 205
	 4.13	 Behavioral Modeling 	 231
	 4.14	 Writing a Simple Testbench 	 239
	 4.15	 Logic Simulation 	 245

5     S y n c h r o n o u s  S e q u e n t i a l  L o g i c  	 2 61

	 5.1	 Introduction 	 262
	 5.2	 Sequential Circuits 	 262
	 5.3	 Storage Elements: Latches 	 264
	 5.4	 Storage Elements: Flip-Flops 	 269
	 5.5	 Analysis of Clocked Sequential Circuits 	 277
	 5.6	 Synthesizable HDL Models of Sequential Circuits 	 291
	 5.7	 State Reduction and Assignment 	 316
	 5.8	 Design Procedure 	 321

6     R e g i s t e r s  a n d  C o u n t e r s  	 34 2

	 6.1	 Registers 	 342
	 6.2	 Shift Registers 	 346

A01_MANO1167_06_GE_FM.indd   6 3/28/18   7:18 PM



Contents        7

	 6.3	 Ripple Counters 	 354
	 6.4	 Synchronous Counters 	 359
	 6.5	 Other Counters 	 367
	 6.6	 HDL Models of Registers and Counters 	 372

7     M e m o r y  a n d  P r o g r a m m a b l e  L o g i c  	 3 9 3

	 7.1	 Introduction 	 394
	 7.2	 Random-Access Memory 	 395
	 7.3	 Memory Decoding 	 402
	 7.4	 Error Detection and Correction 	 407
	 7.5	 Read-Only Memory 	 410
	 7.6	 Programmable Logic Array 	 416
	 7.7	 Programmable Array Logic 	 420
	 7.8	 Sequential Programmable Devices 	 424

8     D e s i g n  a t  t h e  R e g i s t e r  Tr a n s f e r  L e ve l  	 4 4 5

	 8.1	 Introduction 	 446
	 8.2	 Register Transfer Level (RTL) Notation 	 446
	 8.3	 RTL Descriptions 	 448
	 8.4	 Algorithmic State Machines (ASMs) 	 466
	 8.5	 Design Example (ASMD CHART) 	 475
	 8.6	 HDL Description of Design Example 	 485
	 8.7	 Sequential Binary Multiplier 	 503
	 8.8	 Control Logic 	 508
	 8.9	 HDL Description of Binary Multiplier 	 514
	 8.10	 Design with Multiplexers 	 529
	 8.11	 Race-Free Design (Software Race Conditions) 	 545
	 8.12	 Latch-Free Design (Why Waste Silicon?) 	 548
	 8.13	 SystemVerilog—An Introduction 	 549

9      �L a b o r a t o r y  E x p e r i m e n t s  w i t h  
S t a n d a r d  I C s  a n d  F P G A s  	 571

	 9.1	 Introduction to Experiments 	 571
	 9.2	 Experiment 1: Binary and Decimal Numbers 	 576
	 9.3	 Experiment 2: Digital Logic Gates 	 579
	 9.4	 Experiment 3: Simplification of Boolean Functions 	 581
	 9.5	 Experiment 4: Combinational Circuits 	 583
	 9.6	 Experiment 5: Code Converters 	 584
	 9.7	 Experiment 6: Design with Multiplexers 	 586
	 9.8	 Experiment 7: Adders and Subtractors 	 588
	 9.9	 Experiment 8: Flip-Flops 	 591
	 9.10	 Experiment 9: Sequential Circuits 	 593
	 9.11	 Experiment 10: Counters 	 595

A01_MANO1167_06_GE_FM.indd   7 3/28/18   7:18 PM



8        Contents

	 9.12	 Experiment 11: Shift Registers 	 596
	 9.13	 Experiment 12: Serial Addition 	 600
	 9.14	 Experiment 13: Memory Unit 	 601
	 9.15	 Experiment 14: Lamp Handball 	 603
	 9.16	 Experiment 15: Clock-Pulse Generator 	 607
	 9.17	 Experiment 16: Parallel Adder and Accumulator 	 609
	 9.18	 Experiment 17: Binary Multiplier 	 611
	 9.19	� HDL Simulation Experiments and Rapid Prototyping  

with FPGAs 	 615

10     S t a n d a r d  G r a p h i c  S y m b o l s  	 6 21

	 10.1	 Rectangular-Shape Symbols 	 621
	 10.2	 Qualifying Symbols 	 624
	 10.3	 Dependency Notation 	 626
	 10.4	 Symbols for Combinational Elements 	 628
	 10.5	 Symbols for Flip-Flops 	 630
	 10.6	 Symbols for Registers 	 632
	 10.7	 Symbols for Counters 	 635
	 10.8	 Symbol for RAM 	 637

A p p e n d i x  	 6 4 0

A n s we r s  t o  S e l e c t e d  P r o b l e m s  	 6 54

I n d e x  	 6 9 9

A01_MANO1167_06_GE_FM.indd   8 3/28/18   7:18 PM



9

The speed, density, and complexity of today’s digital devices are made possible by 
advances in physical processing technology and digital design methodology. Aside from 
semiconductor technology, the design of leading-edge devices depends critically on 
hardware description languages (HDLs) and synthesis tools. Three public-domain 
languages, Verilog, VHDL, and SystemVerilog, all play a role in design flows for today’s 
digital devices. HDLs, together with fundamental knowledge of digital logic circuits, 
provide an entry point to the world of digital design for students majoring in computer 
science, computer engineering, and electrical engineering. 

In the not-too-distant past, it would be unthinkable for an electrical engineering 
student to graduate without having used an oscilloscope. Today, the needs of industry 
demand that undergraduate students become familiar with the use of at least one 
hardware description language. Their use of an HDL as a student will better prepare 
them to be productive members of a design team after they graduate.

Given the presence of three HDLs in the design arena, we have expanded our 
presentation of HDLs in Digital Design to treat Verilog and VHDL, and to provide 
an introduction to SystemVerilog. Our intent is not to require students to learn three, 
or even two, languages, but to provide the instructor with a choice between Verilog and 
VHDL while teaching a systematic methodology for design, regardless of the language, 
and an optional introduction to SystemVerilog. Certainly, Verilog and VHDL are 
widely used and taught, dominate the design space, and have common underlying 
concepts supporting combinational and sequential logic design, and both are essential 
to the synthesis of high-density integrated circuits. Our text offers parallel tracks of 
presentation of both languages, but allows concentration on a single language. The 
level of treatment of Verilog and VHDL is essentially equal, without emphasizing one 
language over the other. A language-neutral presentation of digital design is a common 

Preface

A01_MANO1167_06_GE_FM.indd   9 3/28/18   7:18 PM



10        Preface

thread through the treatment of both languages. A large set of problems, which are 
stated in language-neutral terms, at the end of each chapter can be worked with either 
Verilog or VHDL.

The emphasis in our presentation is on digital design, with HDLs in a supporting role. 
Consequently, we present only those details of Verilog, VHDL, and SystemVerilog that 
are needed to support our treatment of an introduction to digital design. Moreover, 
although we present examples using each language, we identify and segregate the treat-
ment of topics and examples so that the instructor can choose a path of presentation for 
a single language—either Verilog or VHDL. Naturally, a path that emphasizes Verilog 
can conclude with SystemVerilog, but it can be skipped without compromising the objec-
tives. The introduction to SystemVerilog is selective—we present only topics and exam-
ples that are extensions of Verilog, and well within the scope of an introductory 
treatment. To be clear, we are not advocating simultaneous presentation of the lan-
guages. The instructor can choose either Verilog/SystemVerilog or VHDL as the core 
language supporting an introductory course in digital design. Regardless of the language, 
our focus is on digital design.

The language-based examples throughout the book are not just about the details of 
an HDL. We emphasize and demonstrate the modeling and verification of digital circuits 
having specified behavior. Neither Verilog or VHDL are covered in their entirety. Some 
details of the languages will be left to the reader’s continuing education and use of web 
resources. Regardless of language, our examples introduce a design methodology based 
on the concept of computer-aided modeling of digital systems by means of a main-
stream, IEEE-standardized, hardware description language.

This revision of Digital Design begins each chapter with a statement of its objectives. 
Problems at the end of each chapter are combined with in-chapter examples, and with 
in-chapter Practice Exercises. Together, these encounters with the subject matter bring 
the student closer to achieving the stated objectives and becoming skilled in digital 
design. Answers are given to selected problems at the end of the book. A solution 
manual gives detailed solutions to all of the problems at the end of the chapters. The 
level of detail of the solutions is such that an instructor can use individual problems to 
support classroom instruction.

M U LT I M O DA L  L E A R N I N G

Like the previous editions, this edition of Digital Design supports a multimodal approach 
to learning. The so-called VARK1, 2 characterization of learning modalities identifies four 
major modes by which we learn: (V) visual, (A) aural (hearing), (R) reading, and (K) 
kinesthetic. The relatively high level of illustrations and graphical content of our text 

1 Kolb, David A. (2015) [1984]. Experiential learning: Experience as the source of learning and development 
(2nd ed.). Upper Saddle River, NJ: Pearson Education. ISBN 9780133892406. OCLC 909815841.
2 Fleming, Neil D. (2014). “The VARK modalities”. vark-learn.com.

A01_MANO1167_06_GE_FM.indd   10 4/3/18   4:41 PM



Preface        11

addresses the visual (V) component of VARK; discussions and numerous examples 
address the reading (R) component. Students who exploit the availability of free Verilog, 
VHDL and SystemVerilog simulators and synthesis tools to work assignments are led 
through a kinesthetic learning experience, including the delight of designing a digital 
circuit that actually works. The remaining element of VARK, the aural/auditory (A) 
experience depends on the instructor and the attentiveness of the student (Put away the 
smart phone!). We have provided an abundance of materials and examples to support 
classroom lectures. Thus, a course using Digital Design, can provide a rich, balanced, 
learning experience and address all the modes identified by VARK.

For skeptics who might still question the need to present and use HDLs in a first 
course in digital design, we note that industry does not rely on schematic-based design 
methods. Schematic entry creates a representation of functionality that is implicit in the 
constructs and layout of the schematic. Unfortunately, it is difficult for anyone in a rea-
sonable amount of time to determine the functionality represented by the schematic of 
a logic circuit without having been instrumental in its construction, or without having 
additional documentation expressing the design intent. Consequently, industry today 
relies almost exclusively on HDLs to describe the functionality of a design and to serve 
as a basis for documenting, simulating, testing, and synthesizing the hardware imple-
mentation of the design in a standard cell-based ASIC or an FPGA. The utility of a 
schematic depends on the detailed documentation of a carefully constructed hierarchy 
of design units. In the past, designers relied on their years of experience to create a 
schematic of a circuit to implement functionality. Today’s designers using HDLs, can 
express functionality directly and explicitly, without years of accumulated experience, 
and use synthesis tools to generate the schematic as a byproduct, automatically. Industry 
adopted HDL-based design flows because schematic entry dooms us to inefficiency, if 
not failure, in understanding and designing large, complex, ICs.

Introduction of HDLs in a first course in digital design is not intended to replace 
fundamental understanding of the building blocks of such circuits, or to eliminate a 
discussion of manual methods of design. It is still essential for students to understand 
how hardware works. Thus, this edition of Digital Design retains a thorough treatment 
of combinational and sequential logic design and a foundation in Boolean algebra. 
Manual design practices are presented, and their results are compared with those 
obtained using HDLs. What we are presenting, however, is an emphasis on how hard-
ware is designed today, to better prepare a student for a career in today’s industry, where 
HDL-based design practices are dominant.

F L E X I B I L I T Y

We include both manual and HDL-based design examples. Our end-of-chapter problems 
cross-reference problems that access a manual design task with a companion problem that 
uses an HDL to accomplish the assigned task. We also link the manual and HDL-based 
approaches by presenting annotated results of simulations in the text, in answers to 
selected problems at the end of the text, and extensively in the solution manual.

A01_MANO1167_06_GE_FM.indd   11 3/28/18   7:18 PM



12        Preface

N E W  TO  T H I S  E D I T I O N

This edition of Digital Design uses the latest features of IEEE Standard 1364, but only 
insofar as they support our pedagogical objectives. The revisions and updates to the text 
include:

•  Elimination of specialized circuit-level content not typically covered in a first course 
in logic circuits and digital design (e.g., RTL, DTL, and emitter-coupled logic circuits)

•  Addition of “Web Search Topics” at the end of each chapter to point students to 
additional subject matter available on the web

•  Revision of approximately one-third of the problems at the end of the chapters
•  A solution manual for the entire text, including all new problems
•  Streamlining of the discussion of Karnaugh maps
•  Integration of treatment of basic CMOS technology with treatment of logic gates
•  Inclusion of an appendix introducing semiconductor technology
•  Treatment of digital design with VHDL and SystemVerilog

D E S I G N  M E T H O D o LO G Y

A highlight of our presentation is a systematic methodology for designing a state 
machine to control the data path of a digital system. The framework in which this mate-
rial is presented treats the realistic situation in which status signals from the datapath 
are used by the controller, i.e., the system has feedback. Thus, our treatment provides a 
foundation for designing complex and interactive digital systems. Although it is pre-
sented with an emphasis on HDL-based design, the methodology is also applicable to 
manual-based approaches to design and is language-neutral.

J U S T  E N O U G H  H D L

We present only those elements of Verilog, VHDL, and SystemVerilog that are matched 
to the level and scope of this text. Also, correct syntax does not guarantee that a model 
meets a functional specification or that it can be synthesized into physical hardware. So, 
we introduce students to a disciplined use of industry-based practices for writing models 
to ensure that a behavioral description can be synthesized into physical hardware, and 
that the behavior of the synthesized circuit will match that of the behavioral description. 
Failure to follow this discipline can lead to software race conditions in the HDL models 
of such machines, race conditions in the test bench used to verify them, and a mismatch 
between the results of simulating a behavioral model and its synthesized physical coun-
terpart. Similarly, failure to abide by industry practices may lead to designs that simulate 
correctly, but which have hardware latches that are introduced into the design acciden-
tally as a consequence of the modeling style used by the designer. The industry-based 
methodology we present leads to race-free and latch-free designs. It is important that 
students learn and follow industry practices in using HDL models, independent of 
whether a student’s curriculum has access to synthesis tools.

A01_MANO1167_06_GE_FM.indd   12 3/28/18   7:18 PM



Preface        13

V E R I F I C AT I O N

In industry, significant effort is expended to verify that the functionality of a circuit is 
correct. Yet not much attention is given to verification in introductory texts on digital 
design, where the focus is on design itself, and testing is perhaps viewed as a secondary 
undertaking. Our experience is that this view can lead to premature “high-fives” and 
declarations that “the circuit works beautifully.” Likewise, industry gains repeated 
returns on its investment in an HDL model by ensuring that it is readable, portable, 
and reusable. We demonstrate naming practices and the use of parameters to facilitate 
reusability and portability. We also provide test benches for all of the solutions and 
exercises to (1) verify the functionality of the circuit; (2) underscore the importance of 
thorough testing; and (3) introduce students to important concepts, such as self-checking 
test benches. Advocating and illustrating the development of a test plan to guide the 
development of a test bench, we introduce test plans, albeit simply, in the text and 
expand them in the solutions manual and in the answers to selected problems at the 
end of the text.

H D L  CO N T E N T

We have ensured that all examples in the text and all answers in the solution manual 
conform to accepted industry practices for modeling digital hardware. As in the previous 
edition, HDL material is inserted in separate sections so that it can be covered or 
skipped as desired, does not diminish treatment of manual-based design, and does not 
dictate the sequence of presentation. The treatment is at a level suitable for beginning 
students who are learning digital circuits and an HDL at the same time. The text pre-
pares students to work on significant independent design projects and to succeed in a 
later course in computer architecture and advanced digital design.

Instructor Resources

Instructors can obtain the following classroom-ready resources from the publisher:

•  Source code and test benches for all Verilog HDL examples in the test
•  All figures and tables in the text
•  Source code for all HDL models in the solutions manual
•  A downloadable solutions manual with graphics suitable for classroom presentation

HDL Simulators

Two free simulators can be downloaded from www.Syncad.com. The first simulator is 
VeriLogger Pro, a traditional Verilog simulator that can be used to simulate the HDL 
examples in the book and to verify the solutions of HDL problems. This simulator 
accepts the syntax of the IEEE-1995 standard and will be useful to those who have 
legacy models. As an interactive simulator, VeriLogger Extreme accepts the syntax of 
IEEE-2001 as well as IEEE-1995, allowing the designer to simulate and analyze design 

A01_MANO1167_06_GE_FM.indd   13 3/28/18   7:18 PM



14        Preface

ideas before a complete simulation model or schematic is available. This technology is 
particularly useful for students because they can quickly enter Boolean and D flip-flop 
or latch input equations to check equivalency or to experiment with flip-flops and latch 
designs. Free design tools that support design entry, simulation and synthesis (of FPGAs) 
are available from www.altera.com and from www.xilinx.com.

Chapter Summary

The following is a brief summary of the topics that are covered in each chapter.
Chapter 1 presents the various binary systems suitable for representing information 

in digital systems. The binary number system is explained and binary codes are illus-
trated. Examples are given for addition and subtraction of signed binary numbers and 
decimal numbers in binary-coded decimal (BCD) format.

Chapter 2 introduces the basic postulates of Boolean algebra and shows the correla-
tion between Boolean expressions and their corresponding logic diagrams. All possible 
logic operations for two variables are investigated, and the most useful logic gates used 
in the design of digital systems are identified. This chapter also introduces basic CMOS 
logic gates.

Chapter 3 covers the map method for simplifying Boolean expressions. The map 
method is also used to simplify digital circuits constructed with AND–OR, NAND, or 
NOR gates. All other possible two-level gate circuits are considered, and their method 
of implementation is explained. Verilog and VHDL are introduced together with simple 
examples of gate-level models.

Chapter 4 outlines the formal procedures for the analysis and design of combinational 
circuits. Some basic components used in the design of digital systems, such as adders and 
code converters, are introduced as design examples. Frequently used digital logic func-
tions such as parallel adders and subtractors, decoders, encoders, and multiplexers are 
explained, and their use in the design of combinational circuits is illustrated. HDL exam-
ples are given in gate-level, dataflow, and behavioral models to show the alternative ways 
available for describing combinational circuits in Verilog and VHDL. The procedure for 
writing a simple test bench to provide stimulus to an HDL design is presented.

Chapter 5 outlines the formal procedures for analyzing and designing clocked (syn-
chronous) sequential circuits. The gate structure of several types of flip-flops is presented 
together with a discussion on the difference between level and edge triggering. Specific 
examples are used to show the derivation of the state table and state diagram when 
analyzing a sequential circuit. A number of design examples are presented with empha-
sis on sequential circuits that use D-type flip-flops. Behavioral modeling in Verilog and 
VHDL for sequential circuits is explained. HDL examples are given to illustrate Mealy 
and Moore models of sequential circuits.

Chapter 6 deals with various sequential circuit components such as registers, shift 
registers, and counters. These digital components are the basic building blocks from 
which more complex digital systems are constructed. HDL descriptions of shift registers 
and counters are presented.

A01_MANO1167_06_GE_FM.indd   14 3/28/18   7:18 PM



Preface        15

Chapter 7 introduces random access memory (RAM) and programmable logic 
devices. Memory decoding and error correction schemes are discussed. Combinational 
and sequential programmable devices such as ROMs, PLAs, PALs, CPLDs, and FPGAs 
are presented.

Chapter 8 deals with the register transfer level (RTL) representation of digital sys-
tems. The algorithmic state machine (ASM) chart is introduced. A number of examples 
demonstrate the use of the ASM chart, ASMD chart, RTL representation, and HDL 
description in the design of digital systems. The design of a finite state machine to con-
trol a datapath is presented in detail, including the realistic situation in which status 
signals from the datapath are used by the state machine that controls it. This chapter 
provides the student with a systematic approach to more advanced design projects.

Chapter 9 presents experiments that can be performed in the laboratory with hardware 
that is readily available commercially. The operation of the ICs used in the experiments 
is explained by referring to diagrams of similar components introduced in previous 
chapters. Each experiment is presented informally and the student is expected to design 
the circuit and formulate a procedure for checking its operation in the laboratory. The lab 
experiments can be used in a stand-alone manner too and can be accomplished by a tra-
ditional approach, with a breadboard and TTL circuits, or with an HDL/synthesis approach 
using FPGAs. Today, software for synthesizing an HDL model and implementing a circuit 
with an FPGA is available at no cost from vendors of FPGAs, allowing students to conduct 
a significant amount of work in their personal environment before using prototyping 
boards and other resources in a lab. Circuit boards for rapid prototyping circuits with 
FPGAs are available at a nominal cost, and typically include push buttons, switches, seven-
segment displays, LCDs, keypads, and other I/O devices. With these resources, students 
can work prescribed lab exercises or their own projects and get results immediately.

Chapter 10 presents the standard graphic symbols for logic functions recommended 
by an ANSI/IEEE standard. These graphic symbols have been developed for small-scale 
integration (SSI) and medium-scale integration (MSI) components so that the user can 
recognize each function from the unique graphic symbol assigned. The chapter shows 
the standard graphic symbols of the ICs used in the laboratory experiments.

Acknowledgments

We are grateful to the reviewers of Digital Design, 6e. Their expertise, careful reviews, 
and suggestions helped shape this edition.

Vijay Madisetti, Georgia Tech

Dmitri Donetski, SUNY Stony Brook

David Potter, Northeastern

Xiaolong Wu, California State-Long Beach

Avinash Kodi, Ohio University

Lee Belfore, Old Dominion University

A01_MANO1167_06_GE_FM.indd   15 3/28/18   7:18 PM



16        Preface

We also wish to express our gratitude to the editorial and publication team at Pearson 
Education for supporting this edition of our text. We are grateful, too, for the ongoing 
support and encouragement of our wives, Sandra and Jerilynn.

M. Morris Mano
Emeritus Professor of Computer Engineering  

California State University, Los Angeles

Michael D. Ciletti
Emeritus Professor of Electrical and Computer Engineering  

University of Colorado at Colorado Springs

Acknowledgments for the Global Edition

Pearson would like to thank and acknowledge the following people for their contributions 
to this Global Edition.

Contributors
Moumita Mitra Manna, Bangabasi College

Reviewers
Debaprasad Das, Assam University
Nikhil Marriwala, University Institute of Engineering and Technology, Kanpur
Tapas Kumar Saha, National Institute of Technology, Durgapur

A01_MANO1167_06_GE_FM.indd   16 3/28/18   7:18 PM



17

Chapter 1

Digital Systems and Binary Numbers

C h a p t e r  O b j e c t i v e s

1.	 Understand binary number system.
2.	 Know how to convert between binary, octal, decimal, and hexadecimal numbers.
3.	 Know how to take the complement and reduced radix complement of a number.
4.	 Know how to form the code of a number.
5.	 Know how to form the parity bit of a word.

1.1 	 D i g i ta l  S y s t e m s

Digital systems have such a prominent role in everyday life that we refer to the pres-
ent technological period as the digital age. Digital systems are used in communication, 
business transactions, traffic control, spacecraft guidance, medical treatment, weather 
monitoring, the Internet, and many other commercial, industrial, and scientific enter-
prises. We have digital telephones, digital televisions, digital versatile discs (DVDs), 
digital cameras, personal, handheld, touch-screen devices, and, of course, digital comput-
ers. We enjoy music downloaded to our portable media player (e.g., iPod Touch®) and 
other handheld devices having high-resolution displays and touch-screen graphical user 
interfaces (GUIs). GUIs enable them to execute commands that appear to the user to 
be simple, but which, in fact, involve precise execution of a sequence of complex internal 
instructions. Most, if not all, of these devices have a special-purpose digital computer, or 

M01_MANO1167_06_GE_C01.indd   17 3/27/18   3:37 PM



18        Chapter 1    Digital Systems and Binary Numbers

processor, embedded within them. The most striking property of the digital computer 
is its generality. It can follow a sequence of instructions, called a program, which oper-
ates on given data. The user can specify and change the program or the data according 
to the specific need. Because of this flexibility, general-purpose digital computers can 
perform a variety of information-processing tasks that range over a wide spectrum of 
applications and provide unprecedented access to massive repositories of information 
and media.

One characteristic of digital systems is their ability to represent and manipulate dis-
crete elements of information. Any set that is restricted to a finite number of elements 
contains discrete information. Examples of discrete sets are the 10 decimal digits, the 26 
letters of the alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early 
digital computers were used for numeric computations. In this case, the discrete ele-
ments were the digits. From this application, the term digital computer emerged.

Discrete elements of information are represented in a digital system by physical 
quantities called signals. Electrical signals such as voltages and currents are the most 
common. Electronic devices called transistors predominate in the circuitry that imple-
ment, represent, and manipulate these signals. The signals in most present-day electronic 
digital systems use just two discrete values and are therefore said to be binary. A binary 
digit, called a bit, has two numerical values: 0 and 1. Discrete elements of information 
are represented with groups of bits called binary codes. For example, the decimal digits 0 
through 9 are represented in a digital system with a code of four bits (e.g., the number 7 
is represented by 0111). How a pattern of bits is interpreted as a number depends on the 
code system in which it resides. To make this distinction, we could write (0111)2 to indi-
cate that the pattern 0111 is to be interpreted in a binary system, and (0111)10 to indicate 
that the reference system is decimal. Then 01112 = 710, which is not the same as 011110, 
or one hundred eleven. The subscript indicating the base for interpreting a pattern of 
bits will be used only when clarification is needed. Through various techniques, groups 
of bits can be made to represent discrete symbols, not necessarily numbers, which are 
then used to develop the system in a digital format. Thus, a digital system is a system that 
manipulates discrete elements of information represented internally in binary form. In 
today’s technology, binary systems are most practical because, as we will see, they can 
be implemented with electronic components.

Discrete quantities of information either emerge from the nature of the data being 
processed or may be quantized from a continuous process. On the one hand, a payroll 
schedule is an inherently discrete process that contains employee names, social security 
numbers, weekly salaries, income taxes, and so on. An employee’s paycheck is processed 
by means of discrete data values such as letters of the alphabet (names), digits (salary), 
and special symbols (such as $). On the other hand, a research scientist may observe 
a continuous process, e.g., temperature, but record only specific quantities in tabular 
form. The scientist is thus quantizing continuous data, making each number in the table 
a discrete quantity. In many cases, the quantization of a process can be performed auto-
matically by an analog-to-digital converter, a device that forms a digital (discrete) rep-
resentation of an analog (continuous) quantity. Digital cameras rely on this technology 
to quantify the measurements of exposure captured from an image.

M01_MANO1167_06_GE_C01.indd   18 3/27/18   3:37 PM



Section 1.1    Digital Systems        19

The general-purpose digital computer is the best-known example of a digital system. 
The major parts of a computer are a memory unit, a central processing unit, and input–
output units. The memory unit stores programs as well as input, output, and intermedi-
ate data. The central processing unit performs arithmetic and other data-processing 
operations as specified by the program. The program and data prepared by a user are 
transferred into memory by means of an input device such as a keyboard or a touch-
screen video display. An output device, such as a printer, receives the results of the 
computations, and the printed results are presented to the user. A digital computer can 
accommodate many input and output devices. One very useful device is a communi-
cation unit that provides interaction with other users through the Internet. A digital 
computer is a powerful instrument that can perform not only arithmetic computations 
but also logical operations. In addition, it can be programmed to make decisions based 
on internal and external conditions.

There are fundamental reasons that commercial products are made with digital cir-
cuits. Like a digital computer, most digital devices are programmable. By changing the 
program in a programmable device, the same underlying hardware can be used for many 
different applications, thereby allowing its cost of development to be spread across sales 
to a wider customer base. Dramatic cost reductions in digital devices have come about 
because of advances in digital integrated circuit technology. As the number of transistors 
that can be put on a piece of silicon increases to produce complex functions, the cost 
per unit decreases, and digital devices can be bought at an increasingly reduced price. 
Equipment built with digital integrated circuits can perform at a speed of hundreds of 
millions of operations per second. Digital systems can be made to operate with extreme 
reliability by using error-correcting codes. An example of this strategy is the digital ver-
satile disk (DVD), in which digital information representing photos, video, audio, and 
other data is recorded without the loss of a single item. Digital information on a DVD 
is recorded in such a way that, by examining the code in each digital sample before it is 
played back, any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the opera-
tion of each digital module, it is necessary to have a basic knowledge of digital circuits 
and their logical function. The first seven chapters of this book present the basic tools 
of digital design, such as logic gate structures, combinational and sequential circuits, and 
programmable logic devices. Chapter 8 introduces digital design at the register transfer 
level (RTL) using a modern, public-domain hardware description language (HDL). 
Chapter 9 concludes the text with laboratory exercises using digital circuits.

Today’s array of inexpensive digital devices is made possible by the convergence of 
fabrication technology and computer-based design methodology. Today’s “best practice” 
in digital design methodology uses HDLs to describe and simulate the functionality of a 
digital circuit. An HDL resembles a programming language and is suitable for describing 
digital circuits in textual form. It is used to simulate a digital system to verify its opera-
tion before hardware is built. It is also used in conjunction with logic synthesis tools to 
automate the design process. Because it is important that students become familiar with 
an HDL-based design methodology, HDL descriptions of digital circuits are presented 
throughout the book. While these examples help illustrate the features of an HDL, they 

M01_MANO1167_06_GE_C01.indd   19 3/27/18   3:37 PM



20        Chapter 1    Digital Systems and Binary Numbers

also demonstrate the best practices used by industry to exploit HDLs. Ignorance of these 
practices will lead to cute, but worthless, HDL models that may simulate a phenomenon, 
but that cannot be synthesized by design tools, or to models which waste silicon area or 
synthesize to hardware that does not operate correctly.

As previously stated, digital systems manipulate discrete quantities of information 
that are represented in binary form. Operands used for calculations may be expressed 
in the binary number system. Other discrete elements, including the decimal digits 
and characters of the alphabet, are represented in binary codes. Digital circuits, also 
referred to as logic circuits, process data by means of binary logic elements (logic gates) 
using binary signals. Quantities are stored in binary (two-valued) storage elements (flip-
flops). The purpose of this chapter is to introduce the various binary concepts and pro-
vide a foundation for further study in the succeeding chapters.

1. 2 	B  i n a r y  N u m b e r s

A decimal number such as 7,392 represents a quantity equal to 7 thousands, plus 3 hun-
dreds, plus 9 tens, plus 2 units. The thousands, hundreds, etc., are powers of 10 implied 
by the position of the coefficients (symbols) in the number. To be more exact, 7,392 is a 
shorthand notation for what should be written as

7 * 103 + 3 * 102 + 9 * 101 + 2 * 100

However, the convention is to write only the numeric coefficients and, from their posi-
tion, deduce the necessary powers of 10, with powers increasing from right to left. In 
general, a number with a decimal point is represented by a series of coefficients:

a5a4a3a2a1a0. a-1a-2a-3

The coefficients aj are any of the 10 digits (0, 1, 2, . . . ,9), and the subscript value j gives 
the place value and, hence, the power of 10 by which the coefficient must be multiplied. 
Thus, the preceding decimal number can be expressed as

105a5 + 104a4 + 103a3 + 102a2 + 101a1 + 100a0 + 10-1a-1 + 10-2a-2 + 10-3a-3

with a3 = 7, a2 = 3, a1 = 9, and a0 = 2, and the other coefficients equal to zero.
The radix of a number system determines the number of distinct values that can be 

used to represent any arbitrary number. The decimal number system is said to be of 
base, or radix, 10 because it uses 10 digits and the coefficients are multiplied by powers 
of 10. The binary system is a different number system. The coefficients of the binary 
number system have only two possible values: 0 and 1. Each coefficient aj is multiplied 
by a power of the radix, for example, 2j, and the results are added to obtain the decimal 
equivalent of the number. The radix point (e.g., the decimal point when 10 is the radix) 
distinguishes positive powers of 10 from negative powers of 10. For example, the decimal 
equivalent of the binary number 11010.11 is 26.75, as shown from the multiplication of 
the coefficients by powers of 2:

1 * 24 + 1 * 23 + 0 * 22 + 1 * 21 + 0 * 20 + 1 * 2-1 + 1 * 2-2 = 26.75

M01_MANO1167_06_GE_C01.indd   20 3/27/18   3:37 PM



Section 1.2  B  inary Numbers        21

There are many different number systems. In general, a number expressed in a base-r 
system has coefficients multiplied by powers of r:

 an
# rn + an - 1

# rn - 1 + g + a2
# r2 + a1

# r + a0 + a-1
# r-1

 + a-2
# r-2 + g + a-m

# r-m

The coefficients aj range in value from 0 to r - 1. To distinguish between numbers of 
different bases, we enclose the coefficients in parentheses and write a subscript equal 
to the base used (except sometimes for decimal numbers, where the content makes it 
obvious that the base is decimal). An example of a base-5 number is

(4021.2)5 = 4 * 53 + 0 * 52 + 2 * 51 + 1 * 50 + 2 * 5-1 = (511.4)10

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system is 
a base-8 system that has eight digits: 0, 1, 2, 3, 4, 5, 6, 7. An example of an octal number 
is (127.4)8. To determine its equivalent decimal value, we expand the number in a power 
series with a base of 8:

(127.4)8 = 1 * 82 + 2 * 81 + 7 * 80 + 4 * 8-1 = (87.5)10

Note that the digits 8 and 9 cannot appear in an octal number.
It is customary to borrow the needed r digits for the coefficients from the decimal 

system when the base of the number is less than 10. The letters of the alphabet are used 
to supplement the 10 decimal digits when the base of the number is greater than 10. For 
example, in the hexadecimal (base-16) number system, the first 10 digits are borrowed 
from the decimal system. The letters A, B, C, D, E, and F are used for the digits 10, 11, 
12, 13, 14, and 15, respectively. An example of a hexadecimal number is

(B65F)16 = 11 * 163 + 6 * 162 + 5 * 161 + 15 * 160 = (46,687)10

The hexadecimal system is used commonly by designers to represent long strings of bits 
in the addresses, instructions, and data in digital systems. For example, B65F is used to 
represent 1011011001011111.

As noted before, the digits in a binary number are called bits. When a bit is equal to 
0, it does not contribute to the sum during the conversion. Therefore, the conversion 
from binary to decimal can be obtained by adding only the numbers with powers of two 
corresponding to the bits that are equal to 1. For example,

(110101)2 = 32 + 16 + 4 + 1 = (53)10

There are four 1’s in the binary number. The corresponding decimal number is 
the sum of the four powers of two. Zero and the first 24 numbers obtained from 2 to 
the power of n are listed in Table 1.1. In computer work, 210 is referred to as K (kilo), 
220 as M (mega), 230 as G (giga), and 240 as T (tera). Thus, 4K = 212 = 4,096 and 
16M = 224 = 16,777,216. Computer memory capacity and word size are usually given 
in bytes. A byte is equal to eight bits and can accommodate (i.e., represent the code 
of) one keyboard character. A computer hard disk with four gigabytes of storage has a 
capacity of 4G = 232 bytes (approximately 4 billion bytes). A terabyte is 1024 gigabytes, 
approximately 1 trillion bytes.

M01_MANO1167_06_GE_C01.indd   21 3/27/18   3:37 PM



22        Chapter 1    Digital Systems and Binary Numbers

Arithmetic operations with numbers in base r follow the same rules as for decimal 
numbers. When a base other than the familiar base 10 is used, one must be careful to 
use only the r-allowable digits. Examples of addition, subtraction, and multiplication of 
two binary numbers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011
addend: +100111 subtrahend: -100111  multiplier: * 101
sum: 1010100 difference: 000110 1011

0000 
1011  
110111

The sum of two binary numbers is calculated by the same rules as in decimal, except 
that the digits of the sum in any significant position can be only 0 or 1. Any carry 
obtained in a given significant position is used by the pair of digits one significant posi-
tion higher. Subtraction is slightly more complicated. The rules are still the same as in 
decimal, except that the borrow in a given significant position adds 2 to a minuend digit. 
(A borrow in the decimal system adds 10 to a minuend digit.) Multiplication is simple: 
The multiplier digits are always 1 or 0; therefore, the partial products are equal either 
to a shifted (left) copy of the multiplicand or to 0.

Practice Exercise 1.1

What is the decimal value of 1 * 24 + 0 * 23 + 1 * 22 + 0 * 21 + 1 * 20?

Answer:  21

1. 3 	 N u m b e r - B a s e  Con  v e r s i on  s

Representations of a number in a different radix are said to be equivalent if they have 
the same decimal representation. For example, (0011)8 and (1001)2 are equivalent—both 

partial product:
product:

n 2n n 2n n 2n

0 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 10 1,024 (1K) 18 262,144
3 8 11 2,048 19 524,288
4 16 12 4,096 (4K) 20 1,048,576 (1M)
5 32 13 8,192 21 2,097,152
6 64 14 16,384 22 4,194,304
7 128 15 32,768 23 8,388,608

Table 1.1
Powers of Two

M01_MANO1167_06_GE_C01.indd   22 3/27/18   3:37 PM



Section 1.3    Number-Base Conversions        23

have decimal value 9. The conversion of a number in base r to decimal is done by 
expanding the number in a power series and adding all the terms as shown previously. 
We now present a general procedure for the reverse operation of converting a decimal 
number to a number in base r. If the number includes a radix point, it is necessary to 
separate the number into an integer part and a fraction part, since each part must be 
converted differently. The conversion of a decimal integer to a number in base r is done 
by dividing the number and all successive quotients by r and accumulating the remainders. 
This procedure is best illustrated by example.

EXAMPLE 1.1
Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20 
and a remainder of 1

2. Then the quotient is again divided by 2 to give a new quotient 
and remainder. The process is continued until the integer quotient becomes 0. The coef-
ficients of the desired binary number are obtained from the remainders as follows:

Integer 
Quotient

Remainder Coefficient

41>2 = 20 + 1
2

a0 = 1

20>2 = 10 + 0 a1 = 0

10>2 = 5 + 0 a2 = 0

5>2 = 2 + 1
2

a3 = 1

2>2 = 1 + 0 a4 = 0

1>2 = 0 + 1
2

a5 = 1

Therefore, the answer is (41)10 = (a5a4a3a2a1a0)2 = (101001)2.
The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 1

10 0

5 0

2 1

1 0

0 1    101001 = answer

Conversion from decimal integers to any base-r system is similar to this example, except 
that division is done by r instead of 2.

� ■

M01_MANO1167_06_GE_C01.indd   23 3/27/18   3:37 PM



24        Chapter 1    Digital Systems and Binary Numbers

EXAMPLE 1.2
Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give 
an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer 
quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and 
a remainder of 2. This process can be conveniently tabulated as follows:

153

19 1

2 3

0 2 = (231)8

The conversion of a decimal fraction to binary is accomplished by a method simi-
lar to that used for integers. However, multiplication is used instead of division, and 
integers instead of remainders are accumulated. Again, the method is best explained 
by example.

� ■

EXAMPLE 1.3
Convert (0.6875)10 to binary. First, 0.6875 is multiplied by 2 to give an integer and a 
fraction. Then the new fraction is multiplied by 2 to give a new integer and a new frac-
tion. The process is continued until the fraction becomes 0 or until the number of digits 
has sufficient accuracy. The coefficients of the binary number are obtained from the 
integers as follows:

Integer Fraction Coefficient

0.6875 * 2 = 1 + 0.3750 a-1 = 1

0.3750 * 2 = 0 + 0.7500 a-2 = 0

0.7500 * 2 = 1 + 0.5000 a-3 = 1

0.5000 * 2 = 1 + 0.0000 a-4 = 1

Therefore, the answer is (0.6875)10 = (0.a-1 a-2 a-3 a-4)2 = (0.1011)2.
To convert a decimal fraction to a number expressed in base r, a similar procedure is 

used. However, multiplication is by r instead of 2, and the coefficients found from the 
integers may range in value from 0 to r - 1 instead of 0 and 1.

� ■

M01_MANO1167_06_GE_C01.indd   24 3/27/18   3:37 PM



Section 1.4    Octal and Hexadecimal Numbers        25

EXAMPLE 1.4
Convert (0.513)10 to octal.

 0.513 * 8 = 4.104

 0.104 * 8 = 0.832

 0.832 * 8 = 6.656

 0.656 * 8 = 5.248

 0.248 * 8 = 1.984

 0.984 * 8 = 7.872

The answer, to six significant figures, is obtained from the integer part of the products:

(0.513)10 = (0.406517 c )8

The conversion of decimal numbers with both integer and fraction parts is done by 
converting the integer and the fraction separately and then combining the two answers. 
Using the results of Examples 1.1 and 1.3, we obtain

(41.6875)10 = (101001.1011)2

From Examples 1.2 and 1.4, we have

(153.513)10 = (231.406517)8

� ■

Practice Exercise 1.2

Convert (117.23)10 to octal.

Answer:  (117.23)10 = (165.1656)8

1. 4 	 O c ta l  a nd   H e x a d e c i m a l  N u m b e r s

The conversion from and to binary, octal, and hexadecimal plays an important role in 
digital computers, because shorter patterns of hex characters are easier to recognize 
than long patterns of 1’s and 0’s. Since 23 = 8 and 24 = 16, each octal digit corresponds 
to three binary digits and each hexadecimal digit corresponds to four binary digits. The 
first 16 numbers in the decimal, binary, octal, and hexadecimal number systems are 
listed in Table 1.2.

The conversion from binary to octal is easily accomplished by partitioning the binary 
number into groups of three digits each, starting from the binary point and proceeding 

M01_MANO1167_06_GE_C01.indd   25 3/27/18   3:37 PM



26        Chapter 1    Digital Systems and Binary Numbers

to the left and to the right. The corresponding octal digit is then assigned to each group. 
The following example illustrates the procedure:

(10 110 001 101 011 # 111 100 000 110)2

2 6 1 5 3 7 4 0 6
= (26153.7406)8

Conversion from binary to hexadecimal is similar, except that the binary number is 
divided into groups of four digits:

(10 1100 0110 1011 # 1111 0010)2

2 C 6 B F 2
= (2C6B.F2)16

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily 
remembered from the values listed in Table 1.2.

Conversion from octal or hexadecimal to binary is done by reversing the preceding 
procedure. Each octal digit is converted to its three-digit binary equivalent. Similarly, 
each hexadecimal digit is converted to its four-digit binary equivalent. The procedure is 
illustrated in the following examples:

(673.124)8 = (110 111 011 # 001 010 100)2

6 7 3 1 2 4

and
(306.D)16 = (0011 0000 0110 # 1101)2

3 0 6 D

Decimal  
(base 10)

Binary  
(base 2)

Octal  
(base 8)

Hexadecimal  
(base 16)

00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Table 1.2
Numbers with Different Bases

M01_MANO1167_06_GE_C01.indd   26 3/27/18   3:37 PM



Section 1.5    Complements of Numbers        27

Binary numbers are difficult to work with because they require three or four times 
as many digits as their decimal equivalents. For example, the binary number 
111111111111 is equivalent to decimal 4095. However, digital computers use binary 
representation of numbers, and it is sometimes necessary for the human operator or 
user to communicate directly with the machine by means of such numbers. One scheme 
that retains the binary system in the computer, but reduces the number of digits the 
human must consider,1 utilizes the relationship between the binary number system and 
the octal or hexadecimal system. By this method, the human thinks in terms of octal or 
hexadecimal numbers and performs the required conversion by inspection when direct 
communication with the machine is necessary. Thus, the binary number 111111111111 
has 12 digits and is expressed in octal as 7777 (4 digits) or in hexadecimal as FFF 
(3 digits). During communication between people (about binary numbers in the com-
puter), the octal or hexadecimal representation is more desirable because it can be 
expressed more compactly with a third or a quarter of the number of digits required 
for the equivalent binary number. Thus, most computer manuals use either octal or 
hexadecimal numbers to specify instructions and other binary quantities. The choice 
between them is arbitrary, although hexadecimal tends to win out, since it can represent 
a byte with two digits.

Practice Exercise 1.3

Find the binary representation of 13510.

Answer:  13510 = 1110 00012

Practice Exercise 1.4

Find the octal representation of (135)10.

Answer:  13510 = 7028

1. 5 	 Co m p l e m e n t s  o f  N u m b e r s

Complements are used in digital computers to simplify the subtraction operation and for 
logical manipulation. Simplifying operations leads to simpler, less expensive circuits to 
implement the operations. There are two types of complements for each base-r system: 
the radix complement and the diminished radix complement. The first is referred to as 
the r’s complement and the second as the (r - 1)>s complement. When the value of the 
base r is substituted in the name, the two types are referred to as the 2’s complement 
and 1’s complement for binary numbers and the 10’s complement and 9’s complement 
for decimal numbers.

1 Machines having a word length of 64 bits are common.

M01_MANO1167_06_GE_C01.indd   27 3/27/18   3:37 PM



28        Chapter 1    Digital Systems and Binary Numbers

Diminished Radix Complement

Given a number N in base r having n digits, the (r - 1)>s complement of N, that is, 
its diminished radix complement, is defined as 1rn - 12 - N. For decimal numbers, 
r = 10 and r - 1 = 9, so the 9’s complement of N is 110n - 12 - N. In this case, 10n 
represents a number that consists of a single 1 followed by n 0’s. 10n - 1 is a number 
represented by n 9’s. For example, if n = 4, we have 104 = 10,000 and 104 - 1 = 9999. 
It follows that the 9’s complement of a decimal number is obtained by subtracting each 
digit from 9. Here are some numerical examples:

The 9>s complement of 546700 is 999999 - 546700 = 453299.

The 9>s complement of 012398 is 999999 - 012398 = 987601.

For binary numbers, r = 2 and r - 1 = 1, so the 1’s complement of N is (2n - 1) - N. 
Again, 2n is represented by a binary number that consists of a 1 followed by n 0’s. 2n - 1 
is a binary number represented by n 1’s. For example, if n = 4, we have 24 = (10000)2 
and 24 - 1 = (1111)2. Thus, the 1’s complement of a binary number is obtained by sub-
tracting each digit from 1. However, when subtracting binary digits from 1, we can have 
either 1 - 0 = 1 or 1 - 1 = 0, which causes the bit to change from 0 to 1 or from 1 to 
0, respectively. Therefore, the 1’s complement of a binary number is formed by changing 
1’s to 0’s and 0’s to 1’s. The following are some numerical examples:

The 1>s complement of 1011000 is 0100111.

The 1>s complement of 0101101 is 1010010.

The (r - 1)>s complement of octal or hexadecimal numbers is obtained by subtract-
ing each digit from 7 or F (decimal 15), respectively.

Radix Complement

The r’s complement of an n-digit number N in base r is defined as rn - N for 
N ≠ 0 and as 0 for N = 0. Comparing with the (r - 1)>s complement, we note 
that the r’s complement is obtained by adding 1 to the (r - 1)>s complement, 
since rn - N = [(rn - 1) - N] + 1. Thus, the 10’s complement of decimal 2389 is 
7610 + 1 = 7611 and is obtained by adding 1 to the 9’s complement value. The 2’s 
complement of binary 101100 is 010011 + 1 = 010100 and is obtained by adding 1 to 
the 1’s-complement value.

Since 10 is a number represented by a 1 followed by n 0’s, 10n - N, which is the 10’s 
complement of N, can be formed also by leaving all least significant 0’s unchanged, 
subtracting the first nonzero least significant digit from 10, and subtracting all higher 
significant digits from 9. Thus,

the 10>s complement of 012398 is 987602

and

the 10>s complement of 246700 is 753300

M01_MANO1167_06_GE_C01.indd   28 3/27/18   3:37 PM



Section 1.5    Complements of Numbers        29

The 10’s complement of the first number (012398) is obtained by subtracting 8 from 10 
in the least significant position and subtracting all other digits from 9. The 10’s comple-
ment of the second number (246700) is obtained by leaving the two least significant 0’s 
unchanged, subtracting 7 from 10, and subtracting the other three digits from 9.

Practice Exercise 1.5

Find (a) the diminished radix (9’s) complement and (b) the radix (10’s) complement 
of 13510.

Answer: 
(a)	 9’s complement: 86410

(b)	 10’s complement: 86510

Similarly, the 2’s complement can be formed by leaving all least significant 0’s and the 
first 1 unchanged and replacing 1’s with 0’s and 0’s with 1’s in all other higher significant 
digits. For example,

the 2>s complement of 1101100 is 0010100

and

the 2>s complement of 0110111 is 1001001

The 2’s complement of the first number is obtained by leaving the two least significant 
0’s and the first 1 unchanged and then replacing 1’s with 0’s and 0’s with 1’s in the other 
four most significant digits. The 2’s complement of the second number is obtained by 
leaving the least significant 1 unchanged and complementing all other digits.

In the previous definitions, it was assumed that the numbers did not have a radix 
point. If the original number N contains a radix point, the point should be removed 
temporarily in order to form the r’s or (r - 1)>s complement. The radix point is then 
restored to the complemented number in the same relative position. It is also worth 
mentioning that the complement of the complement restores the number to its original 
value. To see this relationship, note that the r’s complement of N is rn - N, so that the 
complement of the complement is rn - 1rn - N2 = N and is equal to the original 
number.

Subtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow con-
cept. In this method, we borrow a 1 from a higher significant position when the minu-
end digit is smaller than the subtrahend digit. The method works well when people 
perform subtraction with paper and pencil. However, when subtraction is imple-
mented with digital hardware, the method is less efficient than the method that uses 
complements.

M01_MANO1167_06_GE_C01.indd   29 3/27/18   3:37 PM



30        Chapter 1    Digital Systems and Binary Numbers

The subtraction of two n-digit unsigned numbers M - N in base r can be done as follows:

1.	 Add the minuend M to the r’s complement of the subtrahend N. Mathematically, 
M + 1rn - N2 = M - N + rn.

2.	 If M Ú N, the sum will produce an end carry rn, which can be discarded; what is 
left is the result M - N.

3.	 If M 6 N, the sum does not produce an end carry and is equal to rn - (N - M), 
which is the r’s complement of (N - M). To obtain the answer in a familiar form, 
take the r’s complement of the sum and place a negative sign in front.

The following examples illustrate the procedure:

EXAMPLE 1.5
Using 10’s complement, subtract 72532 - 3250.

M = 72532
10>s complement of N = + 96750

Sum = 169282
Discard end carry 105 = -100000

Answer = 69282

Note that M has five digits and N has only four digits. Both numbers must have the same 
number of digits, so we write N as 03250. Taking the 10’s complement of N produces a 
9 in the most significant position. The occurrence of the end carry signifies that M Ú N 
and that the result is therefore positive.

� ■

EXAMPLE 1.6
Using 10’s complement, subtract 3250 - 72532.

M = 03250
10>s complement of N = +27468

Sum = 30718

There is no end carry. Therefore, the answer is written with a minus sign as -(10>s com-
plement of 30718) = -69282.

Note that since 3250 6 72532, the result is negative. Because we are dealing with 
unsigned numbers, there is really no way to get an unsigned result for this case. When 
subtracting with complements, we recognize the negative answer from the absence of 
the end carry and the complemented result. When working with paper and pencil, we 
can change the answer to a signed negative number in order to put it in a familiar form.

Subtraction with complements is done with binary numbers in a similar manner, using 
the procedure outlined previously.

� ■

M01_MANO1167_06_GE_C01.indd   30 3/27/18   3:37 PM




